NEERC 2011
 Problem Review

© Roman Elizarov

A. ASCII Area

- Scan the picture top-to-bottom, left-to right
, Count the number of ' \backslash ' and '/':
- If even, we're outside the polygon
- If odd, we're inside the polygon
- Area =
(number of '/' and ' \backslash ') / $2+$ number of '.' that are inside

B. Binary Encoding

- Find the smallest n, such that: $m<=2^{n}$
- Now $k=2^{n}-m$, is the number of "unused" codes compared to binary encoding
- k is exactly the max number of codes with $\mathrm{n}-1$ bits
- So, to get the answer write
- For i in [0, k-1] write binary encoding of i with n-1 bits
- For i in $[k, m-1]$ write binary encoding of $(i+k)$ with n bits

Caption

- Precompute the following costs:
- e[i,j] - the cost of placing i-th letter of new text starting from horizontal position j on the caption
- $f[i, j]$ - the cost of leaving a range of horizontal positions $[i, j-1]$ on the caption empty
- Now use dynamic programming:
- Define subproblem c[i,j] - the optimal placing of i letters from new text so that the last i-th letter is placed onto horizontal position j .
- $c[i, j]=\min$ for s in $\left[s_{\text {min }}, s_{\text {max }}\right]$ of

$$
\mathrm{c}[\mathrm{i}-1, j-\mathrm{s}-\mathrm{k}]+\mathrm{f}[\mathrm{j}-\mathrm{s}, \mathrm{j}] \mathrm{j}+\mathrm{e}[\mathrm{i}, \mathrm{j}]
$$

- Answer is min c[len(new_text), $] \quad+\mathrm{f}[\mathrm{j}+\mathrm{k}, \mathrm{n}]$

D. Dictionary Size

- Build a two tries:
- all words in a dictionary (trie of prefixes)
- all words in a dictionary in reverse order (trie of suffixes in reverse order)
- Use the second trie to count the number of suffixes starting with letters a to z and the total number of suffixes
- Using the first trie analyze all prefixes:
- +count the number of suffixes for all letters that do not constitute the continuation of suffixes
- +1 all suffixes that are in the dictionary (words)

E. Eve

- Analyze which matrilineal family each individual belongs to (the information about fathers should be ignored)
- A family is either sequenced (at least one individual is) or assign it some unique negative id
- Now analyze the set of families of alive individuals
- Two different positive family ids -> NO
- Just one family alive -> YES
- Otherwise -> POSSIBLY

F. Flights

- Create a data structure with a "skyline" of parabolas (list of intervals)
- Build trivial skyline for each missile
- Recursively merge those skylines to produce a binary tree - interval tree by time, so that $\log (\mathrm{n})$ skylines needs to be analyzed for any time range
- For each node in the time interval tree, build a space interval tree, so that in $\log (n)$ a maximum in any space range can be found.
- Now, each query can be answered in $\log ^{2}(\mathrm{n})$

G. GCD Guessing Game

- The hardest number to guess is 1
- All answers are 1. All other possible numbers have to be eliminated by questioning
- For each prime number in [2,n] range we can ask it, to eliminate all numbers divisible by it
- But we can do better
- For $n=6$ we can ask $6=2 * 3$ and 5 .
- So we need to group primes into the fewest number of groups, with a product $<=n$
- Greedy algorithm will do just fine
- Just group 2 with the largest prime so that their product <= n, etc.

H. Huzita Axiom 6

- For a point and a line, define a family of possible folds that place this point onto this line parameterized by some real t.
- Write an equation in the form $a(t)^{*} x+b(t)^{*} y+c(t)=0$
- Where $a(t)$ and $b(t)$ are linear in $t, c(t)$ is quadratic.
- For two families we need to find t_{1} and t_{2}, so that lines are the same
- The normals $\left(a_{1}, b_{1}\right)$ and (a_{2}, b_{2}) are collinear - Any point from the first line lies on the second.
- Solving this system for t_{1} gives a cubic equation for t_{1}.
- Take care of degenerate cases and solve it using binary search
- Resulting t gives a fold.

I. Interactive Permutation Guessing

- Pick a permutation p and a number i
- Now try all possible positions for i in p
- On some of them the longest common subsequence has the length k on others $k-1$
- Any of the positions that gives an answer k has the following property: i is a part of any common subsequence of length k
- Solution: For all numbers from 1 to n try all their positions and pick the one with max longest common subsequence
- By the above properly we get a common subsequence that contains all ifrom 1 to n

J. Journey

- For each pair (F_{i}, d), where d defines one of 4 directions, recursively find:
- Direction after executing F_{i}
- (dx, dy) - position shift after executing F_{i}
- max $x+y$, max $-x+y$, max $-x-y, \max x-y$
- Use memoization
- Use arbitrary precision numbers (max answer $=10^{200}$)
- Track infinite recursion, when we attempt to compute (F_{i}, d) that is already being computed:
- Collapse all current (dx, dy) on stack
- If they total to $(0,0)$ - the answer is finite
- If they total to something else - the answer is Infinity.

K. Kingdom roadmap

- The graph is a tree. We shall connect each leaf to some other leaf, so that there are no bridges.
- Hang the tree by non-leaf node and recursively solve on subtrees:
- Connect leaves in a subtree passing 1 or 2 leaves to the parent level
- In each subtree connect pairs of dangling leaves, leaving 1 or 2 to return to the parent level
- On the root level, connect two remaining leaves, or connect one to the root

L. Lanes

- Model left-to-right traffic assuming t $=\mathrm{m}$
- Now move t to t-1 (reverse lane earlier)
- Having one more queued car at time moment t-1, find the next free time slot (maintain a list of those), thus update the model
- Model right-to-left traffic assuming t = 1
- Move t to t+1 (reverse lane later)
- Update the model in a similar way
- Having found the total queue time for left-to-right and right-to-left traffic for each t, now find the earliest optimal time t

