
© Roman Elizarov

 Scan the picture top-to-bottom, left-to right

 Count the number of „\‟ and „/‟:
◦ If even, we‟re outside the polygon

◦ If odd, we‟re inside the polygon

 Area =
 (number of „/‟ and „\‟) / 2 +
 number of „.‟ that are inside

 Find the smallest n, such that: m <= 2n

 Now k = 2n – m, is the number of “unused”
codes compared to binary encoding
◦ k is exactly the max number of codes with n-1 bits

 So, to get the answer write
◦ For i in [0, k-1] write binary encoding of i with n-1

bits

◦ For i in [k, m-1] write binary encoding of (i + k)
with n bits

 Precompute the following costs:
◦ e[i,j] – the cost of placing i-th letter of new text

starting from horizontal position j on the caption
◦ f[i,j] – the cost of leaving a range of horizontal

positions [i,j-1] on the caption empty

 Now use dynamic programming:
◦ Define subproblem c[i,j] – the optimal placing of i

letters from new text so that the last i-th letter is
placed onto horizontal position j.

◦ c[i,j] = min for s in [smin, smax] of
 c[i-1,j-s-k] + f[j-s,j] + e[i,j]

 Answer is min c[len(new_text),j] + f[j+k,n]

 Build a two tries:
◦ all words in a dictionary (trie of prefixes)

◦ all words in a dictionary in reverse order (trie of
suffixes in reverse order)

 Use the second trie to count the number of
suffixes starting with letters a to z and the
total number of suffixes

 Using the first trie analyze all prefixes:
◦ +count the number of suffixes for all letters that do

not constitute the continuation of suffixes

◦ +1 all suffixes that are in the dictionary (words)

 Analyze which matrilineal family each
individual belongs to (the information about
fathers should be ignored)

 A family is either sequenced (at least one
individual is) or assign it some unique
negative id

 Now analyze the set of families of alive
individuals
◦ Two different positive family ids -> NO
◦ Just one family alive -> YES
◦ Otherwise -> POSSIBLY

 Create a data structure with a “skyline” of
parabolas (list of intervals)

 Build trivial skyline for each missile
 Recursively merge those skylines to produce

a binary tree – interval tree by time, so that
log(n) skylines needs to be analyzed for any
time range

 For each node in the time interval tree, build
a space interval tree, so that in log(n) a
maximum in any space range can be found.

 Now, each query can be answered in log2(n)

 The hardest number to guess is 1
◦ All answers are 1. All other possible numbers have to be

eliminated by questioning

 For each prime number in [2,n] range we can ask
it, to eliminate all numbers divisible by it

 But we can do better
◦ For n=6 we can ask 6=2*3 and 5.

 So we need to group primes into the fewest
number of groups, with a product <= n

 Greedy algorithm will do just fine
◦ Just group 2 with the largest prime so that their product

<= n, etc.

 For a point and a line, define a family of possible
folds that place this point onto this line
parameterized by some real t.
◦ Write an equation in the form a(t)*x+b(t)*y+c(t)=0
◦ Where a(t) and b(t) are linear in t, c(t) is quadratic.

 For two families we need to find t1 and t2, so that
lines are the same
◦ The normals (a1,b1) and (a2,b2) are collinear
◦ Any point from the first line lies on the second.

 Solving this system for t1 gives a cubic equation
for t1.
◦ Take care of degenerate cases and solve it using binary

search
◦ Resulting t gives a fold.

 Pick a permutation p and a number i
◦ Now try all possible positions for i in p
◦ On some of them the longest common subsequence

has the length k on others k - 1
◦ Any of the positions that gives an answer k has the

following property: i is a part of any common
subsequence of length k

 Solution: For all numbers from 1 to n try all
their positions and pick the one with max
longest common subsequence
◦ By the above properly we get a common

subsequence that contains all i from 1 to n

 For each pair (Fi, d), where d defines one of 4
directions, recursively find:
◦ Direction after executing Fi

◦ (dx, dy) - position shift after executing Fi

◦ max x+y, max –x+y, max –x-y, max x-y
◦ Use memoization
◦ Use arbitrary precision numbers (max answer = 10200)

 Track infinite recursion, when we attempt to
compute (Fi, d) that is already being computed:
◦ Collapse all current (dx, dy) on stack
◦ If they total to (0, 0) – the answer is finite
◦ If they total to something else – the answer is Infinity.

 The graph is a tree. We shall connect each
leaf to some other leaf, so that there are no
bridges.

 Hang the tree by non-leaf node and
recursively solve on subtrees:
◦ Connect leaves in a subtree passing 1 or 2 leaves to

the parent level

◦ In each subtree connect pairs of dangling leaves,
leaving 1 or 2 to return to the parent level

◦ On the root level, connect two remaining leaves, or
connect one to the root

 Model left-to-right traffic assuming t = m
◦ Now move t to t-1 (reverse lane earlier)

◦ Having one more queued car at time moment t-1,
find the next free time slot (maintain a list of
those), thus update the model

 Model right-to-left traffic assuming t = 1
◦ Move t to t+1 (reverse lane later)

◦ Update the model in a similar way

 Having found the total queue time for left-
to-right and right-to-left traffic for each t,
now find the earliest optimal time t

